第五百四十八章 在小小的基地里面挖呀挖呀挖,埋大大的种子去偷别人的家!

类别:科幻灵异 作者:新手钓鱼人字数:8523更新时间:24/02/13 18:53:00
    “.......”

    看着一副早就等候已久架势的叶笃正。

    徐云只是微微一怔,便迅速点了点头,说道:

    “好啊,叶主任有指示,我这个小兵岂敢不从?”

    叶笃正闻言连忙摆了摆手:

    “嗳,韩立同志你说笑了。”

    接着他四处张望了一圈,指着一处树荫下的石桌说道:

    “韩立同志,要不我们去那儿聊聊吧,有椅子,太阳也不大。”

    徐云自无异议。

    同时在从叶笃正身上收回目光的瞬间。

    他又忍不住瞥了眼站在叶笃正身边的那位中年人。

    此人约莫四五十岁的样子,穿着朴素。

    前额头发稀疏,苹果肌显眼,隐隐有些龅牙。

    不知为何。

    虽然徐云没有认出此人的身份,但他总觉得对方隐隐有点面熟。

    不出意外的话。

    这应该也是个有名有姓的人物。

    奈何对方的容貌没有鲜明到陆光达、老郭那般一眼就能认出身份的程度,因此徐云也只能暂时将这股感觉压回到了心底。

    反正接下来要聊天,叶笃正应该会介绍对方的身份。

    石桌距离几人的位置只有三十米不到,看得出来,这是叶笃正专门挑选的地点。

    有备而来.jpg。

    随后几人行进了一段路,很快便来到了石桌边。

    叶笃正先是与陌生男子吹了两下凳子上的灰尘,掸了掸落叶,便径直坐了下去。

    入座后。

    叶笃正轻咳一声,拍了拍身边中年男子的肩膀,对徐云介绍道:

    “韩立同志,和你介绍一下,这位是我从燕京来的好友,钱一同志。”

    “他是基地锅炉厂的车间主管,目前在负责一些和烧水有关的项目,今天顺路和我出来转一转。”

    钱一?

    听到这个名字。

    徐云绷带之下的眉毛便是重重一扬。

    很早以前就提及过。

    如今的221厂内的普通工人或许没那么神秘,但科研人员基本上用的都是假名。

    因此自从知道自己来到了221厂的那一刻起。

    徐云心中便有了一个很牢固的意识:

    听到一个人的名字后,先去怀疑这是个假名。

    而眼前这个中年人徐云隐隐有些熟悉,显然不可能是个无名之辈。

    换而言之.

    钱一也必然是个假名!

    不过大多人的假名一般都不会改变姓氏,也就是对方多半姓钱。

    等等!

    姓钱?

    想到这里。

    徐云又在对方丰满的苹果肌和发型上停留了两秒钟,心中陡然冒出了一个猜测。

    莫非这位是.

    三钱之中的钱秉穹院士?

    随后徐云又悄悄打量了“钱一”几眼,愈发肯定了自己的判断。

    毕竟这副苹果肌和发量实在是太有代表性了。

    这可是真大佬啊.

    钱秉穹乃是华夏核事业最主要的策动者之一,也是华夏最早一批学部委员——就是后来的院士,他的妻子何泽慧也是一位知名的女院士。

    当了。

    后世说起赫赫有名的三钱,很多人经常会以为钱秉穹、钱伟长和钱学森有血缘关系。

    但实际上这三钱并不是父子兄弟,他们只是同姓的分支而已。

    例如钱秉穹的分支是湖州钱氏。

    钱学森老爷子的是杭城钱氏。

    钱伟长先生的则是梁溪钱氏。

    其中梁溪钱氏还出了钱基博与钱钟书这对父子,算上本地旁家,一共出了数十位华夏院士——这还真不是夸大。

    例如钱钟韩、钱临照、钱令希、钱逸泰都是梁溪钱氏的嫡系或者旁支,名字全写出来估摸着某个笨蛋作者就要被骂水文了

    好了。

    视线再回归现实。

    此时的钱秉穹正笑呵呵的坐在叶笃正身边,看起来确实像是个普普通通的锅炉工或者说纯路人。

    因此徐云便也只好假装啥都不知道的与钱秉穹点头致意,算是打过了招呼。

    客套完毕后。

    徐云又把目光转向了叶笃正,迟疑着对他问道:

    “叶主任,不知道您今天来找我是为了.”

    叶笃正闻言沉默片刻,略显怅然的叹了口气,说道:

    “韩立同志,不瞒你说,我今天是特意来找你解惑的。”

    徐云眨了眨眼:

    “解惑?”

    叶笃正没有直接解释原因,而是先抛出了一个问题:

    “韩立同志,我的导师叫做卡尔·古斯塔夫·罗斯贝,不知道你是否听说过这个名字?”

    “罗斯贝?”

    徐云眨了眨,回忆道:

    “研究大气湍流和边界层理论的那位?罗斯贝半径名气也很大,不过是德国还是瑞典人我记不太清了”

    说来也巧。

    作为一名非气象学的物理从业者,徐云认识的气象学家也就那么三五个人——当然了,不包括叶笃正竺可桢这些华夏前辈。

    而就是这三五个人中,便恰好有罗斯贝的身影。

    毕竟这位大佬将波动理论引入到了气象学里,属于近代气象学中很有名的一位物理学家。

    某种意义上来说。

    他的名气近乎与皮叶克尼斯齐名。

    另外罗斯贝半径也是一个非常知名的物理概念,后世的引申度很广。

    “没错,就是他,一个瑞典人。”

    叶笃正眉头扬了扬,看起来似乎对徐云听说过自己的导师有些小欣喜:

    “罗斯贝导师也是数值气象预报的提出者之一,在麻省理工和芝加哥大学都工作过。”

    “十年前他重新回到了斯德哥尔摩,在斯德哥尔摩大学当任起了气象中心主任,四年前因病去世了。”

    说完这些。

    叶笃正眼中的回忆之色稍退,取而代之的是一抹复杂神采:

    “罗斯贝导师一直认为,我们头顶的大气是一个随机系统,所谓求解大气波动方程,实际上只是在求一个近似解而非精确的解罢了。”

    “这也是目前全球相当主流的一种看法,甚至在很长时间里,我也秉持着这种态度。”

    “但是.”

    说到这里。

    叶笃正忍不住看了眼徐云,呼出一口浊气,说道:

    “但是在韩立同志你帮我建立了那个模型后,我愈发感觉这个理论并不正确。”

    “我总觉得大气系统并不是完全随机,而是另一种非常玄妙但却可以被计算掌握的情况。”

    “更重要的是我在几天前做了一个实验。”

    徐云再次一怔,下意识问道:

    “什么实验?”

    叶笃正沉吟片刻,从身边拿起了自己的公文包。

    只见他从中翻找了几下,很快取出了一本黑色的笔记本,将它递到了徐云面前:

    “韩立同志,你看看这个吧。”

    随后意识到徐云现在可能还没有接取重物的能力,叶笃正特意把笔记本翻到了自己要展示的页面。

    徐云低着脑袋看了几眼,旋即便有些诧异的抬起了头:

    “叶主任,这是.两份气象数据的模拟结果?”

    “是的。”

    叶笃脸上的表情非常凝重,指着上头的数据,解释道:

    “准确来说,这是两组极小差值数据得出的模拟结果。”

    “第一份数据的环流场参数是1.14514,第二份数据的参数则被我四舍五入成了1.1452,其余19组数据全部相同。”

    “但是.就是这么个微小的差值,最终推导的结果却相差了十万八千里。”

    “前者七个小时内天气晴朗,后者却是三个小时后会有一场特大暴雨。”

    叶笃正自己都没有注意到。

    说这番话的时候,他的手指都有些颤抖。

    其实早在一周前也就是推导数据模型的那个晚上,叶笃正便和陶诗言聊过了一些事情。

    那时候他甚至还给自己的猜测取了个名字,叫做太素系统。

    但当时的叶笃正更多还是偏向于一种猜想,并没有太多实际证据支撑。

    促使他产生这种想法的原因不是数据或者现象,而是他在徐云帮助下建立的、气象此前从未有过的气象模型。

    然而就在几天前。

    一个意外发生了。

    当时上级部门鉴于气象中心在天气预测中做出的巨大贡献,主动提出对气象中心的成员进行物质上的嘉奖。

    在给集体申报完奖励后。

    叶笃正忽然鬼使神差的提出了一个要求:

    他个人不需要任何奖励,只是希望首都够腾出一小部分104计算机的算力帮他模拟一次计算结果,整个推导过程只会改变一个参数。

    上级部门经过评估后认为这个要求不算过分,便允许104机配合他做了一次模拟。

    然而没想到的是

    1.14514和1.1452这两个初始参数得出的结果,相差之大如同朱时茂和陈佩斯的发量!

    这个结果也惊动了首都的竺可桢先生,于是竺老换了个思路,从中间部分截取参数进行修改模拟。

    这次非初始参数的修改虽然依旧在结果上有所变化,但出入程度远远没有第一次那么大。

    换而言之.

    叶笃正所构筑出的模型,对于初始条件极端敏感。

    同时这种敏感并非完全随机,而是一种更加复杂的离散态——否则竺老的实验结果应该同样偏散才是。

    想到这里。

    叶笃正不由深吸一口气,对徐云说道:

    “韩立同志,你对气象多普勒雷达的原理非常了解,气象数据方面的造诣也比我深。”

    “所以我今天前来找你就是想请教一件事,我们的大气系统到底是一个什么状态?”

    “是极致精确,还是完全随机?亦或者是某种无限接近精确的近似?”

    “.”

    看着一脸疑惑的叶笃正。

    徐云心中,也不由冒出了一股浓浓的意外。

    如果说气象多普勒雷达是他在阻尼器那会儿就考虑到的后手。

    那么叶笃正此时的情况,就完全不在他的预料范围内了,甚至可以说是远远脱离了他的掌控。

    起码徐云无论如何都不会想到。

    叶笃正居然会越过数值天气预报,直接奔向了.

    混沌系统!

    没错。

    混沌系统!

    众所周知。

    近代物理学界对于世界的认知是呈现递进态的,版本不停在优化更新。

    首先是爱因斯坦的相对论打破了小牛的绝对时空观。

    接着量子力学的创立,揭示了微观粒子运动的随机和不确定性。

    第三阶段便是眼下这个时期。

    也就是决定论框架中的随机性研究,引出了.

    混沌理论。

    混沌理论最早被提出于1963年,距离现在还有一些时间。

    当时气象学家爱德华·诺顿·洛伦茨建立了一个简化的气象模型,用来模拟气象情况。

    这个模型一共用了12个参数,用以表征基本的气象特征,诸如气压、温度等等,比叶笃正此时用到的20个参数简易很多。

    在一次的模拟过程中。

    洛伦茨为了保证数据准确,决定重新运行一下这个程序的一部分。

    不过为了节约时间。

    他并没有从头运行这个模型,而是从运行中段的某一时刻作为初始点来运行。

    熟知数值运算的同学应该都知道。

    程序不变,初始点又是来自上一次运行结果。

    那么理论上不管再运行多少次,最终得到的结果都是一样的。

    但是这一次却不同。

    当时洛伦茨的二次运行结果和上次大相径庭,偏离得毫无规律。

    就好像这个结果是来自一个完全不同的程序一般。

    最早经过仔细的核查,洛伦茨发现他把一个数据在抄写过程中简化了两个小数点。

    就是这么一丢丢偏差,导致了运行结果的截然不同。

    最终洛伦茨在63年提出了赫赫有名的混沌理论,其中最有代表性的就是蝴蝶效应的那句话:

    “一只南美洲亚马逊河流域热带雨林中的蝴蝶,偶尔扇动几下翅膀,可以在两周以后引起德克萨斯州的一场龙卷风。”

    当然了。

    需要解释的一点是

    这句话的本意其实并不是说【蝴蝶的翅膀引发了风暴】。

    而是

    【引发风暴的原因太复杂了,以至于我们需要知道每一只蝴蝶的翅膀,才有可能预测这个结果。】

    而混沌理论的出现,则彻底将物理界推向了另一个方向。

    想到这里。

    徐云不由深吸一口气,心中有了决断。

    虽然叶笃正的情况并不在他的预料之中,爱德华·诺顿·洛伦茨这人和徐云也没啥矛盾。

    但这种送上门的好事儿,哪有往外推脱之理?

    于是徐云沉吟片刻,很快对叶笃正说道:

    “叶主任,不瞒你说,您讲的这个情况,其实风灵月影社团内也有人思考过。”

    “对了,叶主任,不知道你听没听说过印度舍罕王的宰相西萨.班.达依尔数麦粒的故事?”

    叶笃正眨了眨眼,很快给出了答案:

    “当然听说过。”

    舍罕王赏麦。

    这算是一个很有名的数学典故。

    上辈子是国际象棋的同学应该都知道。

    传说国际象棋的发明者是古印度的宰相西萨·班·达依尔,那时的国王是舍罕,世人称为舍罕王。

    舍罕王对于国际象棋非常喜爱,便询问达依尔需要得到什么赏赐。

    达依尔则留下了一句传世经典的话:

    【请您在棋盘的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子放8粒.即每一个次序在后的格子上放的麦粒必须是前一个格子麦粒数的倍数,直到最后一个格子即第64格放满为止,这样我就十分满足了】。

    舍罕王同意了这个要求,但最后他才发现如果按照达依尔的算法,他得要支付整个王国往后2000年的麦粒才行

    随后徐云顿了顿,对叶笃正说道:

    “当然了,这个故事的真假我们无从分辨,不过却从中可以看出一个道理。”

    “那就是如果一个动力学系统的初始条件中有一个微小误差δZ0,那么在它的演化过程中,这个偏差在时间t内变化出现一个演化函数。”

    说罢。

    徐云有些费力的拿起笔,写下了一个函数:

    |δZ(t)||δZ0|eλt。

    接着徐云在λ下方画了条横,继续说道:

    “这个λ我称之为李雅普诺夫指数,它表征了敏感程度。”(注:李雅普诺夫是19世纪的人,但李雅普诺夫指数要在混沌系统建立后才会提出)

    “如果它是负数,我们会发现初始偏差会在演化过程中被不断抹平——这代表它对初始条件不敏感,反之则极其敏感。”

    “而在一般动力学系统中呢,其演化总是可以被这样一个微分方程来描述,也就是d/dtX=f(X)”

    看着徐云洋洋洒洒写下的这些内容。

    从兴趣小组离开后便一直【0v0】的乔彩虹忍不住挠了挠头发。

    哎呀。

    头有点痒,好像要长脑子了

    其实吧。

    徐云向叶笃正描述的内容,正是后世知名度很广的反馈系统和指数发散。

    这也是为数不多的混沌系统在概念上的数学切入点。

    当然了。

    后世还有一些曼德布洛特集和多分形图案等等,但这些都需要计算机进行辅助。

    过了片刻。

    看着徐云写出来的内容,叶笃正眼中隐隐闪过了一丝明悟:

    “.我好像有些明白了,韩立同志,大气系统的基本原理,其实符合决定论的逻辑?”

    “没错。”

    徐云闻言,心中微微一松,用力点了点头:

    “这个系统并不是在驳斥决定论,而是因为决定论的方程出现了难以预测的现象,才令这个系统值得探究。”

    “它是以决定论为基础的理论,用决定论推出了难以预测的结果——这是一个非常重要的概念。”

    在徐云来的后世。

    有关混沌系统的概念,经常会出现两个误区。

    一是认为混沌系统的存在驳斥了可知论或者决定论,和量子不确定性是一个概念。

    这其实是一个非常离谱的错误。

    混沌系统指的是一定时间内不可知,并不是不确定,它和和决定论本身是不冲突的。

    同时混沌理论是纯数学机制,而量子不确定性是物理机制——经典动力学中存在混沌现象,纯量子力学中不存在混沌现象。

    更重要的是。

    混沌意味着蝴蝶效应和相空间的分形结构,要求是非线性动力学。

    量子力学中的确定状态只能在希尔伯特空间中描述,是一种线性状态。

    至于第二个误区嘛

    就是混沌系统经常会莫名其妙的和‘哲学’扯上关系,最终越走越远。

    比如说着说着就会扯上道家的定义,动不动就是道生一,一生二,二生三,三生万物。

    然后末尾给你一个微信,加上去tmd就是推销檀香的

    徐云一直担心叶笃正会误入这两个陷阱,这会导致叶笃正今后出现极其严重的研究壁垒,甚至可能精神上变成李火旺。

    因此他从刚开始的时候,便在努力给叶笃正灌输混沌理论是纯数学机制这个概念。

    “韩立同志。”

    就在徐云给叶笃正解释到差不多之际。

    一旁一直没说话的钱一或者说钱秉穹突然开口了:

    “韩立同志,那么照你这样说,我们的世界其实很大部分都是非线性的了?”

    “那么如此一来,线性方程和线性规划能解决的问题岂非太少?”

    听到钱秉穹这番话。

    徐云忍不住看了他一眼。

    随后强行按捺住见到大佬的激动,平静的摇了头,解释道:

    “钱额,钱一同志对吧,那倒未必。”

    “至少在我看来,线性系统其实是对非线性系统的一种‘最优线性近似’。”

    “它保留了非线性系统中那些最重要的定性性质,比如稳定性或者不稳定性,也就是动力系统的拓扑性质。”

    “根据微分拓扑的理论来分析,光滑流形上的那些可以被线性近似的非线性系统是通有的。”

    说罢。

    徐云再次拿起纸和笔,慢慢写了起来。

    众所周知。

    广义的说。

    “线性系统”指的是其解满足线性迭加原理的系统,即:

    F(x_1+x_2+x_3+)=F(x_1)+F(x_2)+F(x_3)+

    这个F不能简单地理解为只是一个可以写成显式的函数形式,而应该看做一个映射。

    简而言之。

    线性系统对应的也就是线性映射。

    而在针对常微分方程动力系统的非线性的研究领域里所指的线性系统的形式则往往是这样的:

    \frac{dX}{dt}=A\cdot X其中X=[x1,x2,x3,.]T。

    而A是一个常数矩阵,则这是一个线性的常微分动力系统。

    与之相区别的非线性系统,则是无法写成以上形式的方程组所表征的系统。

    比如有些是二阶、三阶、更高阶的系统,或者说形式上矩阵A中的项跟X的各项有关。

    当然了。

    非线性系统也包含偏微分方程中的非线性系统。

    比如可以形成Turing Pattern的带有扩散项的系统。

    但另一方面。

    微分拓扑中的科普卡-斯梅尔定理机制保证了一个稠密性的情况:

    局部稳定流形在工作点局部线性化之后。

    对应的线性系统会具有稳定子空间εs和不稳定子空间εu,它们分别与对应的流形相切。

    也就是在一定程度上。

    非线性系统可以被近似看做线性系统处理。

    “.”

    过了一会儿。

    钱秉穹消化掉了徐云的想法,又皱着眉头说道:

    “但就算如此,韩立同志,也不是所有非线性系统都可以被线性化近似的吧?”

    “或者说需要把非线性系统近似成线性,必须要完成很大的计算量?”

    “没错。”

    徐云干脆利落的点了点头,肯定道:

    “想要尽可能的去优化近似,就必须要完成大量的计算——这和穷举法是一个道理。”

    “而想要做到这一步,必须要依靠另一个工具。”

    这一次。

    钱秉穹沉默了更长时间,方才慢慢说道:

    “你是指计算机?”

    徐云深吸一口气,双手悄悄在桌下握成了拳:

    “没错,计算机,我个人认为,这个方向是未来最重要的趋势之一。”

    “甚至这样说21世纪,将会是计算机的世纪。”

    钱秉穹顿时瞳孔一缩。

    作为华夏原子能科学事业的创始人,钱秉穹虽然由于专业限制,对计算机谈不上精通。

    但他在大局观这块的掌握度却远非常人所能及。

    因此在整个交谈过程中,他便意识到了一件事:

    如果世界真正是非线性的话.

    那么今后科学发展的本底逻辑,就是要将非线性的东西近似成线性状态。

    这所谓的‘东西’可能是天气、

    可能是理论、

    可能是经济、

    也可能是

    科技与军事。

    而倘若真是如此。

    那么徐云所说的计算机,确实就是必不可少的一个重要方向了。

    “计算机吗.”

    看着对面脸色变换不停的钱秉穹,徐云的心绪同样紧张不已。

    这是他临时挖的一个坑。

    【世界是非线性的】。

    这是一个在混沌理论提出后才被发现的真相。

    注意。

    还是那句话:

    这不是一个哲学话题,而是数学概念。

    只是它听起来有点哲学味儿罢了。

    非线性研究从上个世纪60年代出现,直到70年代末才正式进入发展阶段。

    这个概念直接促使了很多领域的发展,其中最具代表性的便是

    计算机行业。

    后世什么金融混沌系统啦、神经混沌系统啦、气象混沌系统啦,全都是靠着计算机支棱起来的。

    因此在叶笃正提出了混沌理论的问题后,徐云立刻想到了这一层:

    自己当初已经在孙俊人那边埋下了工业软件的线,而如果再在今天埋下计算机的种子.

    那画面可太美了.

    而且要知道。

    此时坐在自己对面的可是钱秉穹!

    一位完全有能力理解自己所说概念、意识到这个价值并且把它传递给决策层的大佬!

    倘若上层真的开始重视计算机

    妈耶。

    这个世界改动的好像有点厉害了

    不过没关系。

    被强化的可是兔子,谁不希望自己的国家越来越好呢?

    徐云甚至巴不得兔子尽早搞出高达,人人开着初号机,在某些不得house的house面前好好展示展示什么叫作风优良!

    因此一时间。

    现场三人齐齐陷入了沉思,只有一旁的乔彩虹感觉天旋地转。

    然而几秒钟后。

    呜呜呜——

    距离他们不远处的一根电线杆上,忽然有个喇叭响起了刺耳的警报声。

    见此情形。

    石桌边。

    叶笃正、钱秉穹等人骤然脸色一变,猛然转头看向了某个方位。

    乔彩虹也瞬间从o.O的表情中恢复了过来,一把拉住了徐云的轮椅:

    “韩立同志,有情况!咱们快走!”

    注:

    今天驴兄生日,大家去角色卡点个赞吧.

    (本章完)